【2023年1月開講】Pythonで学ぶ ものづくりのAI実装入門|JTEX 職業訓練法人日本技能教育開発センター

JTEXが取り組むSDGsの目標
プライバシーマーク制度
SuperGrace
  • Twitter
  • YouTube JTEXチャンネル
-最新情報をお届けいたします-
  1. 全講座一覧
  2. 生涯訓練講座
  3. ものづくり(技術)
  4. AI・IoT
  5. 【2023年1月開講】Pythonで学ぶ ものづくりのAI実装入門

講座詳細

Web提出可

電子ブックあり

【2023年1月開講】Pythonで学ぶ ものづくりのAI実装入門

講座コード: E47

受講期間:3ヵ月

レベル:初級 中級 

レポート提出方式: マークシート マークシート Web提出 Web提出

特別受講料(税込):22,000

一般受講料(税込):24,200

お問い合わせ(個人・法人共通)

講座資料をダウンロードする

こんなコースです

AIをシステムに実装する際に必要な知識を身に付けよう!
 機械学習システムの開発は通常のシステム開発に比べ、前処理やアルゴリズムの選定、モデルのチューニングなど性能向上のための試行錯誤を前提とするため、プロセスをまたいだ手戻りが発生しやすいという性質をもっています。そのため、各プロセスでは何を行うべきか、またあるプロセスで満足のいく結果が出なかったときにどのプロセスまで戻るべきかといった進め方をしっかりと把握し、開発工数を適切に管理することが重要となります。
 本講座では、ものづくり分野のAI実装の概要を理解し、実践に活かせるような知識を身につけられるよう、実際にデータセットを用いて機械学習のアルゴリズムを試しながら学習を進めていきます。

ねらいと特色

  • ものづくりの分野におけるAI実装の概要を理解します。
  • 機械学習の分野に必要となる、線形代数、確率統計、微分の知識を身につけます。
  • 実際にデータセットを用いて機械学習のアルゴリズムを試すことにより、基本的な概念を理解します。
  • AI分野で多く使われている言語であるPythonと、Anacondaを利用したプログラミング環境を前提としてAI実装を学びます。
  • Pythonのライブラリとして、NumPy、pandas、Matplotlib、scikit-learn、LightGBM、TensorFlow、Kerasを扱います。
  • 画像認識、物体検出、異常検知を通して、より実践的な機械学習のプロセスを体験します。

教材構成

  • テキスト:1冊(電子ブック対応)
  • レポート回数:3回(Web提出可)

主な項目

No. 主 な 項 目
1
第1章 人工知能/機械学習/ディープラーニング概要
人工知能とは
機械学習とは
ディープラーニングとは

第2章 機械学習の基礎知識
機械学習の基礎知識
機械学習のワークフロー
機械学習モデルの誤差と評価
機械学習における注意点

第3章 Python入門
Python概要
環境構築
Pythonプログラミング

第4章 Python基本ライブラリ
NumPy
pandas
Matplotlib

第5章 線形代数
線形代数
ベクトル同士の足し算・引き算
ベクトルの掛け算
ベクトルのノルム
行列の足し算・引き算
行列の掛け算
逆行列
線形変換
2
第6章 確率統計
確率統計
事象と確率
確率変数と確率分布
確率の加法定理と条件付確率
期待値と分散
相関係数
推定

第7章 微分
微分
関数
極限
微分法
いろいろな関数の微分法
偏微分

第8章 機械学習の代表的なアルゴリズム
回帰分析
SVM
決定木
勾配ブースティング
ロジスティック回帰
k平均
主成分分析

第9章 ディープラーニングの代表的なアルゴリズム
DNN
CNN
RNN、LSTM、 Transformer
誤差逆伝播法
3
第10章 Pythonの機械学習ライブラリ
scikit-learnの概要
回帰分析
SVM
決定木
ロジスティック回帰
k-meansクラスタリング
主成分分析
勾配ブースティング決定木

第11章 Pythonのディープラーニングライブラリ
TensorFlowとKerasの概要
DNN
CNN
RNN

第12章 画像認識/物体検出/異常検知
データセットの紹介とダウンロード方法
画像認識
異常検知とは

第13章 劣化予測
時系列異常検知タスク
特徴量分析
異常検知の実装

※ 内容は、一部変更される可能性があります。

お申し込みはこちら