Pythonで学ぶAI活用入門|JTEX 職業訓練法人日本技能教育開発センター

JTEXが取り組むSDGsの目標
プライバシーマーク制度
SuperGrace
  • Twitter
  • YouTube JTEXチャンネル
-最新情報をお届けいたします-

講座詳細

Web提出可

電子ブックあり

Pythonで学ぶAI活用入門

講座コード: E45

受講期間:3ヵ月

レベル:入門 初級 

レポート提出方式: マークシート マークシート Web提出 Web提出

特別受講料(税込):22,000

一般受講料(税込):24,200

お申込み(個人)

カゴに入れる

お申込み(法人)

講座資料をダウンロードする

こんなコースです


実践的AI基礎講座―具体的に機械学習の概念と利用法がわかる
これからAIの活用を考えている技術者の方を対象とし、現在AIの代表的技術である機械学習に焦点をあて、どのようにプログラミングしていくのか、その概観を学ぶ講座です。
Python言語の機械学習ツールを利用して、ひととおり機械学習のプロセスを回す際に気をつけるべきポイントを解説します。
  • ★AIの概要を学び、機械学習の基本的な考え方、各手法の特徴とともに利用手順を学びます。
  • ★「教師あり学習」と「教師なし学習」の概要―手順をPythonの機械学習ツールの利用例を通じて理解します。
  • ★ディープラーニングの概要とツールの利用例を学びます。

ねらいと特色

  • 機械学習の考え方や概念が、具体例を通して理解できます。
  • 豊富な事例で、代表的機械学習ツールであるPythonのscikit-learnの基礎的利用法がわかります。
  • ディープラーニングツールKerasの基本的利用法がわかります。
  • データをどのように識別していくのか、その方法を具体的に学びます。

教材構成

  • テキスト:1冊(電子ブック対応)
  • レポート回数:3回(Web提出可)
  • データダウンロードサービス

主な項目

No. 主 な 項 目
1
第1章 AIの概要
AIとは   AIの歴史   AI分野の俯瞰

第2章 機械学習の概要
機械学習とは   機械学習の要素   機械学習の分類
教師あり学習   教師なし学習   半教師あり学習
ディープラーニング   強化学習

第3章 機械学習の基本的な手順
機械学習の流れ   データセット   データフォーマット
前処理   次元の呪い   主成分分析による次元圧縮
バイアスとバリアンス   評価方法:クロスバリデーション
簡単な識別器:k-近傍法   評価指標   ROC曲線

第4章 Pythonによる機械学習の手順
プログラミング環境準備   仮想環境の構築
scikit-learnによる機械学習の基本的な流れ
K-近傍法によるIrisデータの識別
識別境界面の描画   近傍数kの影響
2
第5章 教師あり学習[1]
識別(1): 決定木学習
決定木学習の基礎   決定木学習によるIrisデータの識別実装例

識別(2): ナイーブベイズ分類器
統計的機械学習とは   MAP推定によるナイーブベイズ分類器
簡単な例   ゼロ頻度問題への対処
ナイーブベイズ分類器によるゴルフプレー識別実装例

識別(3) ロジスティック回帰
ロジスティック回帰の基礎   正則化による過剰適合の抑制
ロジスティック回帰による手書き文字認識実装例

第6章 教師あり学習[2]
識別(4): ニューラルネットワーク
ニューラルネットワークの基礎   効率的な学習テクニック
多層パーセプトロンによる手書き文字認識実装例

識別(5): サポートベクタマシン
サポートベクタマシンの基礎
入れ子の交差検証によるハイパーパラメータ調整
ハイパーパラメータ最適化
SVMによる乳がん診断データの識別実装例

回帰
線形回帰   線形基底回帰
ニューラルネットワークによる回帰
サポートベクタ回帰   回帰問題の評価指標
逐次特徴選択   各種回帰手法による住宅価格推定実装例
3
第7章 教師なし学習
クラスタリング
階層型クラスタリング   k-meansクラスタリング
ガウス混合モデル   自己組織化マップ(SOM)
クラスタリングの評価指標
SOMによるglassデータのクラスタリングと可視化実装例

異常検知
異常検知の基本的な考え方   評価指標
Local Outlier Factor   One-Class SVM
Isolation Forest   機器の振動データに対する異常検知実装例

第8章 ディープラーニング
ディープラーニングの概要   ディープラーニングと表現学習
AutoEncoderによる事前学習   Dropoutによる過剰適合の抑制
畳み込みニューラルネットワーク(CNN)
学習済みモデルの活用
時系列データの学習:RNNとLSTM   ディープラーニングツール
AutoEncoder+DNN,MLP,CNNによる手書き文字認識実装例

受講者の声

さまざまな機械学習に関連する基本的な原理・原則とPython上でのプログラムの具体的な実行方法が網羅的に解説されていた。

AIについて人からの説明で概要は理解していると思っていたが、基礎から習うことで正しい知識がみについた。またpythonのコードを繰り返し書き、コンパイル、実行することで、言語に慣れることができ、独学よりも確実に身についたと感じる。

AIの基礎を勉強すると共に、AIのプログラミングにも触れることができ、より実践的でよかった。

AIの勉強を初めてする自分にとって,言葉の意味や概念,考え方をざっと勉強できたことで,今後,さらに知識を深めていくときの土台が少しできたと感じられた。

AI入門ということで、何を勉強すべきなのか、今までは全然分からなかったが、この教本で自分には何が不足しているか分かった。